4.2 Energy and Power

Definition 4.11. For a signal ¢(t), the instantaneous power p(t) dissipated
in the 1-Q resister is p,(t) = |g(t)|* regardless of whether g(t) represents a
voltage or a current. To emphasize the fact that this power is based upon
unity resistance, it is often referred to as the normalized (instantaneous)
power.

Definition 4.12. The total (normalized) energy of a signal g(t) is given
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4.13. By the Parseval’s theorem discussed in 2.43] we have
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Definition 4.14. The average (normalized) power of a signal g(t) is given
by Lntrs/
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Definition 4.15. To simplify the notation, there are two operators that
used angle brackets to define two frequently-used integrals:

<C> =
Lale) +hier > = Laltry + < bt
. 1 T/2 . 1 T
(g) = (g (t)) = lim —/ g (t)dt = lim ﬁ/ g(t)dt  (35)
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(a) The “time-average” operator:
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(b) The inner-product operator:

4.16. Using the above definition, we may write e o=

° B, =(g,9) = (G,G) where G = F {g} E5 = Jl'j[*u ) de - [9&:) 6*L+)e]’c
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Inner Product (Cross Correlation)

® Vector
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® Waveform: Time-Domain = (: ) ' l,:) )
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® Waveform: Frequency Domain = (~1(3) T3
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Orthogonality
® Two signals are said to be orthogonal if their inner
product isizero.
® The symbol _L is used to denote orthogonality.
. * Example:
Vecwr; - a, by n 2t +3 and 5t* +t —1—7 on [—1,1]
(ab)=a-b"=| i || i | =ab 0 —2 _
k=1 1
an bn 5
Time-domain: seady 15
(a.b)=[a(t)b’ (t)dt:O}
— @ample (Fourier Series): \
Frequency dog}ain: . t . t
(AB)= J. ACT)B" () <0 SlIl(Zﬂ'kl?j and COS(Z?Z' 2?) on [0,T |
- j27zni

@ \e T on [0,T]
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Important Properties

® Parseval’s theorem
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It is therefore sufficient ‘

to check only on the
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e Useful observation: If the non-zero regions of two signals
»x lt)

Tom, & © donot overlap in time domain or { /N 3": /
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do not overlap in frequency domain, = FDM, FONA

then the two signals are orthogonal (their inner product = 0).

® However, in general, orthogonal signals may overlap both in

time and in frequency domain.
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Orthogonality: Example 1
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The two waveforms above overlaps both in time domain and in frequency domian.
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Orthogonality: Example 2

An example of four “mutually orthogonal” signals.

c (t) When i # |,
g (ai(t).c;(1))
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e Parseval’s theorem: (g1, go) = (G, Go)
where G1 = F {g1} and Gy = F {g2}

4.17. Time-Averaging over Periodic Signal: For periodic signal g(t) with

period Ty, the time-average operation in (35)) can be s;ll_nphﬁed 'I:EO)'Z O t+T
1 e
(o) = o[ § 0yt Jw . J
0
° -T./2 ol

where the integration is performed over a period of g.

o A #0,
Example 4.18. (cos (27 fot +0)) = 7
cos &, 7[ =9,

o, /;é o, \
Similarly, (sin (27 fot + 0)) = {s- 6 K=o,
Example 4.19. <6082 (27 fot + 0) > = v

3 (1+ cos (27@A4)+ + z&)

7_ , A
c.o;"gw’ A =0

Example 4.20. (e/70!H0) = (cos (2 fot + 0) + j sin (27 fot + 0))
o, 4 o,
‘id“ £ =0

o

Example 4.21. Suppos

g(t) = cej@for some (possibly complex-valued)
constant ¢ and

-valued] Trequency fy. Find P,.

= < |3c+,1’-> = {)|d%) L3a17¥;+'z.> = Lt 1D =kl > = ief

4.22. When the signal ¢(t) can be expressed in the form g(t) = 3 cpe/?™/kt
k
and the [fp are distinet, then its (average) power can be calculated from

g Py= Yl
k

tre delta

functions de  Tpower of the sum = 5o of porer?
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c’Oma.;ﬁ- when we vag or’{"'\oagﬂal siﬁﬂo-]s.
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Example 4.23. Suppose g(t) = 2636“ + 3¢/, Find P,.

< C.
) 2 (R Y N ~
P = 1S +1C,] = 2+3 =4+a=13
A o= A = P; #3°P
Example 4.24. Suppose g(t) = 2¢/5™ 4 3¢/ Find P,.
jezt
tj(.-t') =5
P, = 5= 25

Example 4.25. Suppose g(t) = cos (27 fot +6). Find P,.

Here, there are several ways to calculate F,. We can simply use Ex-
ample [£.19] Alternatively, we can first decompose the cosine into complex
exponential functions using the FEuler’s formula:

2
=0 - o s (1D = cos &
£ gLed =z cos (L) = P‘:) <19 C' A ‘
C‘-’*Lz‘?’"if"g) 1 .‘Eﬁ/‘{' 1~¢9~) 1 -J'(_zr;';{'-l +6 ) 1. Jé' J"-’?"[{' c’-az‘-‘]zm/f
7{?"0 .-2- e + 7 e . = 2 +'E &
= )2 )" & |4 , ~ted=d A=A
4.26. The (average) power of a sinusoidal signal ¢(t) =

{ %lAP? fO 7&07

Fy = |A|Pcos?6, fy = 0.

g =

This property means any sinusoid with nonzero frequency can be written in
the form

g (t) = /2P, cos (2rfot +0) .
4.27. Extension of [4.26} Consider sinusoids Ay cos (27 fi.t + 6.) whose[fié=
Iqaenciesk c [positiverandidistinet The (average) power of their sum

t) = Z Ay, cos (27 frit + 6)
k
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Example 4.28. Suppose g (t) = 2'cos (27r\/§t) + 4 cos (27r\/gt). Find P,.
£ 2t N U Vi) | (Zz*‘ll) =10
? 2 2 z
Example 4.29. Suppose g () 4 cos (2t — 30°)+%sin (3t). Find
P, A A
§ )
220 + wl-30" = 3L ~13.2°
— ‘-rx__gé- = 2/3
-"—/z"+(3+zr§)" L6
= A Ve é'. “gz L
S Aces(t+ £°)
2 2
P = _/_\_. B -..-5_. = 25+ (,/;
? 2 2

4.30. For periodic signal g(t) with period T}, there is also no need to carry
out the limiting operation to find its (average) power P,. We only need to

find an average carried out over a single period:

T
T, {
1
Example 4.31. - vec T () J-———[
glt) = Z vect (t-2n) =y —-1;-9t
pect (X £ = oo
—_— 1 l./ 5 N *
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4.32. When the Fourier series expansion (to be reviewed in Section |4.3)) of
the signal is available, it is easy to calculate its power:

m .
(a) When the corresponding Fourier series expansion g(t) = Y. cpe/2™*/ot

is known,

Py = Z ’Ck|2-

k=—00

k=—o00

(b) When the signal ¢(¢) is real-valued and its (compact) trigonometric

Fourier series expansion g(t) = co+2 >, |ci| cos (2mk fot + Z¢y) is known,
k=1

(0.}
Py=cg+2) el
k=1

Definition 4.33. Based on Definitions [4.12| and 4.14, we can define three

distinct classes of signals:

Ex. _Etl__

(a) If B, is finite and nonzero, g is referred to as an energy stgnal.

(b) If P, is finite and nonzero, g is referred to as a power signal. H

(¢) Some signalﬂ are neither energy nor power signals. ’ E\(D

1 l“)(j

D

e Note that the power signal has infinite energy,and an energy signal has
zero average power; thus the two categories are disjoint.

Example 4.34. Rectangular pulse

Lo = \lﬁ_?
{ 9 —>
1

] -

N)-

veet(t)

PG) = < ]f)[_lﬁll> =0

Consider g(t) = t~1/41, «)(t), with to > 0.
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Example 4.35. Sinc pulse ~ qL¥) =sine (Z7¢)

E. - )\au»l’Jb- J sl (7 dt - J|¢L,z,|‘c],r -1 e(uw) 3
1 - £ L o> s o
agree™ N 9 )
1V ~ i arec, L -1 _ rcc.r(-t,) C.r‘\t.t” $|5l'\0|'
i;%'/' \ = -5
* f/J )7[- # P:) )
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Example 4.36. For o g *1[0,00)(t) is an energy signal with o f’”"l
Eg - |A‘2/205 5.5-\0; .

Example 4.37. The rotating phasor signal g(t) = Ael@™fot+0) is a power
signal with P, = |A|*.

Example 4.38. The sinusoidal signal g(t) = Acos(27 fot + 6) is a power
signal with P, = |AJ*/2.

4.39. Consider the transmitted signal
x(t) = m(t) cos(2m f.t + 0)

in DSB-SC modulation. Suppose M (f — f.) and M(f + fc)_

(a) If m(t) is a power signal with power P,,, then the average transmitted

power 1is
P, = %Pm
¢ P,o-"" M(F) )K(f)
. ﬁt ! &,
aﬁeuv JT'TT > A Tm] | h‘fﬁ S/
7, £

e Q: Why is the power (or energy) reduced?

() =mlby>cor (L )

1 7
< Lt "‘-m?'(_-t) cosr L )




e Remark: When z(t) = (t) cos(2m f.t +0) (with n_
betwee , we have P, = P,,.

(b) If m(¢) is an energy signal with energy E,,, then the transmitted energy

1s
1

E,.=-E,.
, 2
Example 4.40. Suppose m(t) E cos(2m f.t). Find the average power in
x(t) = m(t) cos(2m f.t). P - |Alz : 1_1: 1
" T2 2t
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