4.2**Energy and Power**

Definition 4.11. For a signal q(t), the instantaneous power p(t) dissipated in the 1- Ω resister is $p_a(t) = |g(t)|^2$ regardless of whether g(t) represents a voltage or a current. To emphasize the fact that this power is based upon unity resistance, it is often referred to as the **normalized** (instantaneous) power.

Definition 4.12. The total (normalized) *energy* of a signal q(t) is given by

$$E_g = \int_{-\infty}^{+\infty} p_g(t) dt = \int_{-\infty}^{+\infty} |g(t)|^2 dt = \lim_{T \to \infty} \int_{-T}^{T} |g(t)|^2 dt.$$

4.13. By the **Parseval's theorem** discussed in 2.43, we have

$$E_g = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df.$$
 Es D: Energy Spectral density

Definition 4.14. The average (normalized) **power** of a signal g(t) is given enersy by

"general
formula"
$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g(t)|^2 dt.$$

Definition 4.15. To simplify the notation, there are two operators that used angle brackets to define two frequently-used integrals:

(a) The "time-average" operator:

$$\langle g \rangle \equiv \langle g(t) \rangle \equiv \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt \quad (35)$$

207 = 0

(b) The **inner-product** operator:

$$\langle g_1, g_2 \rangle \equiv \langle g_1(t), g_2(t) \rangle = \int_{-\infty}^{\infty} g_1(t) g_2^*(t) dt \stackrel{\checkmark}{=} \langle \mathcal{G}_1(\mathcal{G}_2) \rangle$$

4.16. Using the above definition, we may write

 $E_{g} = \int |g(t,t)|^{2} dt = \int g(t,t) g^{*}(t,t) dt$ $\int -\infty$ $3 \cdot 3^{*} = |3|^{2}$ $= \langle g, g \rangle$ • $E_g = \langle g, g \rangle = \langle G, G \rangle$ where $G = \mathcal{F} \{g\}$

Inner Product (Cross Correlation)

• Vec

• Vector

$$\langle \bar{x}, \bar{y} \rangle = \bar{x} \cdot \bar{y}^* = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^* \leftarrow \text{Complex conjugate}$$

$$= \sum_{k=1}^n x_k y_k^* \land \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \land \begin{pmatrix} 3 \\ 1 \end{pmatrix}^*$$
• Waveform: Time-Domain

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t) y^*(t) dt$$

$$= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
• Waveform: Frequency Domain

$$\langle X, Y \rangle = \int_{-\infty}^{\infty} X(f) Y^*(f) df$$

$$= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Orthogonality

- Two signals are said to be **orthogonal** if their **inner** product is zero.
- The symbol \bot is used to denote orthogonality.

Vector:

$$\left\langle \vec{a}, \vec{b} \right\rangle = \vec{a} \cdot \vec{b}^{*} = \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} \cdot \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}^{*} = \sum_{k=1}^{n} a_{k} b_{k}^{*} = 0$$
Time-domain:

$$\left\langle a, b \right\rangle = \int_{-\infty}^{\infty} a(t) b^{*}(t) dt = 0$$
Frequency domain:

$$\left\langle A, B \right\rangle = \int_{-\infty}^{\infty} A(f) B^{*}(f) df = 0$$
Example:

$$b_{1} \\ \vdots \\ b_{n} \end{pmatrix}^{*} = \sum_{k=1}^{n} a_{k} b_{k}^{*} = 0$$
Example:

$$2t + 3 \text{ and } 5t^{2} + t - \frac{17}{9} \text{ on } [-1,1]$$

$$\int_{-\infty}^{\frac{33}{2}} a(t) b^{*}(t) dt = 0$$
Example (Fourier Series):

$$sin \left(2\pi k_{1} \frac{t}{T} \right) \text{ and } cos \left(2\pi k_{2} \frac{t}{T} \right) \text{ on } [0,T]$$

$$e^{j2\pi n\frac{t}{T}} \text{ on } [0,T]$$

The two waveforms above overlaps both in time domain and in frequency domian.

• Parseval's theorem: $\langle g_1, g_2 \rangle = \langle G_1, G_2 \rangle$ where $G_1 = \mathcal{F} \{g_1\}$ and $G_2 = \mathcal{F} \{g_2\}$

4.17. Time-Averaging over Periodic Signal: For *periodic* signal g(t) with period T_0 , the time-average operation in (35) can be simplified to

$$\langle g \rangle = \frac{1}{T_0} \iint_{T_0} (t) dt \qquad \int_{0}^{\infty} \sigma r \int_{-\tau_0/2}^{\tau_0/2} \sigma r$$

where the integration is performed over a period of g .
Example 4.18. $\langle \cos (2\pi f_0 t + \theta) \rangle = \begin{cases} 0, & f_0 \neq 0, \\ \cos \theta, & f_0 = 0, \end{cases}$
Similarly, $\langle \sin (2\pi f_0 t + \theta) \rangle = \begin{cases} 0, & f_0 \neq 0, \\ \sin \theta, & f_0 = 0. \end{cases}$
Example 4.19. $\langle \cos^2 (2\pi f_0 t + \theta) \rangle = \begin{cases} 2 \frac{1}{2} (1 + \cos (2\pi f_0 t + 2\theta)) \rangle = \frac{1}{2}, & f_0 \neq 0, \\ \cos^2 \theta, & f_0 = 0 \end{cases}$
Example 4.20. $\langle e^{j(2\pi f_0 t + \theta)} \rangle = \langle \cos (2\pi f_0 t + \theta) + j \sin (2\pi f_0 t + \theta) \rangle = \begin{cases} 0, & f_0 \neq 0, \\ \cos^2 \theta, & f_0 = 0 \end{cases}$

Example 4.21. Suppose $g(t) = ce^{j2\pi f_0 t}$ for some (possibly complex-valued) constant c and (real-valued) frequency f_0 . Find P_g .

$$P_{g} = \langle |g_{l+1}|^{2} \rangle = \langle |c|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^{2} \rangle = |c|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^{2} \rangle = |c|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^{2} |e^{j_{1} \sqrt{f_{o}t}}|^$$

4.22. When the signal g(t) can be expressed in the form $g(t) = \sum_{k} c_k e^{j2\pi f_k t}$ and the f_k are distinct, then its (average) power can be calculated from

$$P_g = \sum_k |c_k|^2$$
the delta
functions do "power of the sum = sum of power"
not overlar
in the frage
domain.
$$P_g = \sum_k |c_k|^2$$

$$P_g = \sum_k |c_k|^2$$

$$P_g = \sum_k |c_k|^2$$
when sum of power"
$$P_{\Xi} = \Xi P$$
when we have orthogonal signals.
$$48$$

$f_1 \neq f_1$

Example 4.23. Suppose $g(t) = 2e^{j6\pi t} + 3e^{j8\pi t}$. Find P_g .

$$P_{g} = |C_{1}|^{2} + |C_{2}|^{2} = 2^{2} + 3^{2} = 4 + 9 = 13$$

 $g(t) = 5e^{j6\pi t}$ $P_g = 5^2 = 25$

Example 4.25. Suppose $g(t) = \cos(2\pi f_0 t + \theta)$. Find P_g .

Here, there are several ways to calculate P_g . We can simply use Example 4.19. Alternatively, we can first decompose the cosine into complex exponential functions using the Euler's formula:

$$f_{c} = 0 \quad g(t) \equiv \cos(\theta) \quad \Rightarrow P_{g} = \langle lg(t)|^{2} \rangle \equiv \cos^{2}\theta$$

$$cos(2\pi f_{c}t + \theta) \quad \int_{1}^{2} e^{j(2\pi f_{c}t + \theta)} \quad -j(2\pi f_{c}t + \theta) \quad \int_{1}^{2} j\theta j 2\pi f_{c}t \quad -j\theta - j2\pi f_{c}t \quad +j\theta - j2\pi f_{c}t \quad$$

$$P_g = \begin{cases} \frac{1}{2}|A|^2, & f_0 \neq 0, \\ |A|^2 \cos^2\theta, & f_0 = 0. \end{cases}$$

This property means any sinusoid with nonzero frequency can be written in the form

$$g(t) = \sqrt{2P_g}\cos\left(2\pi f_0 t + \theta\right).$$

4.27. Extension of 4.26: Consider sinusoids $A_k \cos(2\pi f_k t + \theta_k)$ whose frequencies are positive and distinct. The (average) power of their sum

$$g(t) = \sum_{k} A_k \cos\left(2\pi f_k t + \theta_k\right)$$

is

$$P_g = \frac{1}{2} \sum_k |A_k|^2.$$

.

For a signal
$$g(t)$$
,
 $E_{g} = \int |g(t)|^{2} dt = \langle g, g \rangle = \langle G, G \rangle$
 $P_{g} = \lim_{T \to \infty} \frac{1}{2T} \int |g(t)|^{2} dt = \langle |g(t)|^{2} \rangle$
 $T \to \infty$
 T

$f_1 \neq f_2$

Example 4.28. Suppose
$$g(t) = 2 \cos(2\pi\sqrt{3}t) + 4 \cos(2\pi\sqrt{5}t)$$
. Find P_g .
 $f_1 \neq A$ $P_g = \frac{|A_1|^2}{2} + \frac{|A_2|^2}{2} = \frac{1}{2} \left(2^2 + 4^2\right) = 40$
Example 4.29. Suppose $g(t) = 3\cos(2t) + 4\cos(2t - 30^\circ) + 5\sin(3t)$. Find
 F_g .
 f_z f_z
 f_z f_z f_z
 f_z f_z
 f_z f_z
 f_z f_z f_z f_z
 f_z f_z

4.30. For *periodic* signal g(t) with period T_0 , there is also no need to carry out the limiting operation to find its (average) power P_g . We only need to find an average carried out over a single period:

$$P_{g} = \frac{1}{T_{0}} \int_{T_{0}} |g(t)|^{2} dt.$$
Example 4.31.

$$g(t) = \sum rect(t-2n)$$

$$rect(t)$$

$$F_{0} = \frac{1}{2} \int_{T_{0}} |g(t)|^{2} dt = \frac{1}{2} \int_{T_{0}} 1^{2} dt = \frac{1}{2} (0, \infty) \xrightarrow{R} p_{0}$$

4.32. When the Fourier series expansion (to be reviewed in Section 4.3) of the signal is available, it is easy to calculate its power:

(a) When the corresponding Fourier series expansion $g(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$ is known,

$$P_g = \sum_{k=-\infty}^{\infty} |c_k|^2.$$

(b) When the signal g(t) is real-valued and its (compact) trigonometric Fourier series expansion $g(t) = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos(2\pi k f_0 t + \angle \phi_k)$ is known,

$$P_g = c_0^2 + 2\sum_{k=1}^{\infty} |c_k|^2.$$

Definition 4.33. Based on Definitions 4.12 and 4.14, we can define three distinct classes of signals:

- (a) If E_g is finite and nonzero, g is referred to as an *energy signal*.
- (b) If P_g is finite and nonzero, g is referred to as a **power signal**.
- (c) Some signals¹⁷ are neither energy nor power signals.
 - Note that the power signal has infinite energy and an energy signal has zero average power; thus the two categories are disjoint.

¹⁷Consider $g(t) = t^{-1/4} \mathbf{1}_{[t_0,\infty)}(t)$, with $t_0 > 0$.

Example 4.37. The rotating phasor signal $g(t) = Ae^{j(2\pi f_0 t + \theta)}$ is a power signal with $P_g = |A|^2$.

Example 4.38. The sinusoidal signal $g(t) = A\cos(2\pi f_0 t + \theta)$ is a power signal with $P_g = |A|^2/2$.

4.39. Consider the transmitted signal

$$x(t) = m(t)\cos(2\pi f_c t + \theta)$$

in DSB-SC modulation. Suppose $M(f - f_c)$ and $M(f + f_c)$ do not overlap (in the frequency domain).

(a) If m(t) is a power signal with power P_m , then the average transmitted power is

- Remark: When $x(t) = \sqrt{2}n(t)\cos(2\pi f_c t + \theta)$ (with no overlapping between $M(f f_c)$ and $M(f + f_c)$), we have $P_x = P_m$.
- (b) If m(t) is an energy signal with energy E_m , then the transmitted energy is $E_m = \frac{1}{2}E_m$

$$E_{x} = \frac{1}{2}E_{m}.$$
Example 4.40. Suppose $m(t) = A\cos(2\pi f_{c}t)$. Find the average power in $x(t) = m(t)\cos(2\pi f_{c}t).$

$$P_{m} = \frac{|A|^{2}}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2}$$